资源类型

期刊论文 626

会议视频 20

会议信息 1

年份

2023 42

2022 65

2021 54

2020 41

2019 59

2018 30

2017 40

2016 28

2015 30

2014 16

2013 27

2012 17

2011 35

2010 18

2009 17

2008 22

2007 31

2006 20

2005 7

2004 4

展开 ︾

关键词

能源 6

节能减排 4

仿真 3

光纤通信 3

环境 3

碳中和 3

2型糖尿病 2

CAN总线 2

人工智能 2

光纤传感技术 2

实时控制 2

实时服务 2

时间序列 2

深度学习 2

2 Mb/s高速信令 1

2035年 1

4D打印 1

AF/PSTM 1

ANSYS 1

展开 ︾

检索范围:

排序: 展示方式:

Synthesis of Ag and Cd nanoparticles by nanosecond pulsed discharge in liquid nitrogen

Mahmoud Trad, Alexandre Nominé, Natalie Tarasenka, Jaafar Ghanbaja, Cédric Noël, Malek Tabbal, Thierry Belmonte

《化学科学与工程前沿(英文)》 2019年 第13卷 第2期   页码 360-368 doi: 10.1007/s11705-019-1802-7

摘要: The synthesis of CdO, Ag O (5 nm) and Ag (~20‒30 nm) nano-objects is achieved simultaneously by nanosecond-pulsed discharges in liquid nitrogen between one cadmium electrode and one silver electrode. Oxidation occurs when liquid nitrogen is fully evaporated and nanoparticles are in contact with the air. No alloy is formed, whatever the conditions, even though both elements are present simultaneously, as showed by time-resolved optical emission spectroscopy. This lack of reactivity between elements is attributed to the high pressure within the discharge that keeps each metallic vapor around the electrode it comes from. Each element exhibits a specific behavior. Cubic Cd particles, formed at 4 kV, get elongated with filamentary tips when the applied voltage reaches 7 and 10 kV. Cd wires are formed by assembly in liquid nitrogen of Cd nanoparticles driven by dipole assembly, and not by dielectrophoresis. On the contrary, silver spherical particles get assembled into 2D dendritic structures. The anisotropic growth of these structures is assumed to be due to the existence of pressure gradients.

关键词: spark discharges     submerged discharges     time-resolved optical emission spectroscopy     liquid nitrogen    

Engineering

Raquel Portela, Susana Perez-Ferreras, Ana Serrano-Lotina, Miguel A. Bañares

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 509-536 doi: 10.1007/s11705-018-1740-9

摘要:

The term operando was coined at the beginning of this century to gather the growing efforts devoted to establish structure-activity relationships by simultaneously characterizing a catalyst performance and the relevant surface chemistry during genuine catalytic operation. This approach is now widespread and consolidated; it has become an increasingly complex but efficient junction where spectroscopy, materials science, catalysis and engineering meet. While for some characterization techniques kinetically relevant reactor cells with good resolution are recently developing, the knowledge gained with magnetic resonance and X-ray and vibrational spectroscopy studies is already huge and the scope of operando methodology with these techniques is recently expanding from studies with small amounts of powdered solids to more industrially relevant catalytic systems. Engineering catalysis implies larger physical domains, and thus all sort of gradients. Space- and time- resolved multi-technique characterization of both the solid and fluid phases involved in heterogeneous catalytic reactions (including temperature data) is key to map processes from different perspectives, which allows taking into account existing heterogeneities at different scales and facing up- and down-scaling for applications ranging from microstructured reactors to industrial-like macroreactors (operating with shaped catalytic bodies and/or in integral regime). This work reviews how operando methodology is evolving toward engineered reaction systems.

关键词: operando     structured catalysts     space-resolved     time-resolved     spectroscopy    

Long-lasting photoluminescence quantum yield of cesium lead halide perovskite-type quantum dots

Yonghyun Kim, Huiwen Liu, Yi Liu, Boa Jin, Hao Zhang, Wenjing Tian, Chan Im

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 187-197 doi: 10.1007/s11705-020-1931-z

摘要: Cesium lead halide perovskite (CsPbX , X= Cl, Br, I) quantum dots (QDs) and their partly Mn -substituted QDs (CsPb Mn X ) attract considerable attention owing to their unique photoluminescence (PL) efficiencies. The two types of QDs, having different PL decay dynamics, needed to be further investigated in a form of aggregates to understand their solid-state-induced exciton dynamics in conjunction with their behaviors upon degradation to achieve practical applications of those promising QDs. However, thus far, these QDs have not been sufficiently investigated to obtain deep insights related to the long-term stability of their PL properties as aggregated solid-states. Therefore, in this study, we comparatively examined CsPbX - and CsPb Mn X -type QDs stocked for>50 d under dark ambient conditions by using excitation wavelength-dependent PL quantum yield and time-resolved PL spectroscopy. These investigations were performed with powder samples in addition to solutions to determine the influence of the inter-QD interaction of the aged QD aggregates on their radiative decays. It turns out that the Mn -substituted QDs exhibited long-lasting PL quantum efficiencies, while the unsubstituted CsPbX -type QDs exhibited a drastic reduction of their PL efficiencies. And the obtained PL traces were clearly sensitive to the sample status. This is discussed with the possible interaction depending on the size and distance of the QD aggregates.

关键词: quantum dots     cesium lead halide perovskite     time-resolved photoluminescence     PL quantum yield     QD aggregates    

Terahertz time-domain spectroscopy of high-pressure flames

Jason BASSI, Mark STRINGER, Bob MILES, Yang ZHANG

《能源前沿(英文)》 2009年 第3卷 第2期   页码 123-133 doi: 10.1007/s11708-009-0033-x

摘要: Laser spectroscopy in the visible and near infrared is widely used as a diagnostic tool for combustion devices, but this approach is difficult at high pressures within a sooty flame itself. High soot concentrations render flames opaque to visible light, but they remain transparent to far-infrared or terahertz (THz) radiation. The first far-infrared absorption spectra, to the best of our knowledge, of sooty, non-premixed, ethylene high-pressure flames covering the region of 0.2-2.5 THz is presented. A specially designed high-pressure burner which is optically accessible to THz radiation has been built allowing flame transmission measurements up to pressures of 1.6 MPa. Calculations of the theoretical combustion species absorption spectra in the 0.2-3 THz range have shown that almost all the observable features arise from H O. A few OH (1.84 and 2.51 THz), CH (2.58 THz), and NH (1.77 and 2.95 THz) absorption lines are also observable in principle. A large number of H O absorption lines are observed in the ground vibrational in a laminar non-premixed, sooty flame (ethylene) at pressures up to 1.6 MPa.

关键词: terahertz time-domain spectroscopy     high-pressure flames     H2O absorption lines    

Time of flight improved thermally grown oxide thickness measurement with terahertz spectroscopy

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0705-3

摘要: As a nondestructive testing technique, terahertz time-domain spectroscopy technology is commonly used to measure the thickness of ceramic coat in thermal barrier coatings (TBCs). However, the invisibility of ceramic/thermally grown oxide (TGO) reflective wave leads to the measurement failure of natural growth TGO whose thickness is below 10 μm in TBCs. To detect and monitor TGO in the emergence stage, a time of flight (TOF) improved TGO thickness measurement method is proposed. A simulative investigation on propagation characteristics of terahertz shows the linear relationship between TGO thickness and phase shift of feature wave. The accurate TOF increment could be acquired from wavelet soft threshold and cross-correlation function with negative effect reduction of environmental noise and system oscillation. Thus, the TGO thickness could be obtained efficiently from the TOF increment of the monitor area with different heating times. The averaged error of 1.61 μm in experimental results demonstrates the highly accurate and robust measurement of the proposed method, making it attractive for condition monitoring and life prediction of TBCs.

关键词: thermal barrier coatings     thermally grown oxide     terahertz spectroscopy     time of flight    

Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials

Amun JARZEMBSKI, Cedric SHASKEY, Keunhan PARK

《能源前沿(英文)》 2018年 第12卷 第1期   页码 43-71 doi: 10.1007/s11708-018-0524-8

摘要: Vibrational spectroscopy is one of the key instrumentations that provide non-invasive investigation of structural and chemical composition for both organic and inorganic materials. However, diffraction of light fundamentally limits the spatial resolution of far-field vibrational spectroscopy to roughly half the wavelength. In this article, we thoroughly review the integration of atomic force microscopy (AFM) with vibrational spectroscopy to enable the nanoscale characterization of emerging energy materials, which has not been possible with far-field optical techniques. The discussed methods utilize the AFM tip as a nanoscopic tool to extract spatially resolved electronic or molecular vibrational resonance spectra of a sample illuminated by a visible or infrared (IR) light source. The absorption of light by electrons or individual functional groups within molecules leads to changes in the sample’s thermal response, optical scattering, and atomic force interactions, all of which can be readily probed by an AFM tip. For example, photothermal induced resonance (PTIR) spectroscopy methods measure a sample’s local thermal expansion or temperature rise. Therefore, they use the AFM tip as a thermal detector to directly relate absorbed IR light to the thermal response of a sample. Optical scattering methods based on scanning near-field optical microscopy (SNOM) correlate the spectrum of scattered near-field light with molecular vibrational modes. More recently, photo-induced force microscopy (PiFM) has been developed to measure the change of the optical force gradient due to the light absorption by molecular vibrational resonances using AFM’s superb sensitivity in detecting tip-sample force interactions. Such recent efforts successfully breech the diffraction limit of light to provide nanoscale spatial resolution of vibrational spectroscopy, which will become a critical technique for characterizing novel energy materials.

关键词: vibrational spectroscopy     atomic force microscopy     photo-thermal induced resonance     scanning near-field optical microscopy     tip-enhanced Raman spectroscopy     photo-induced force microscopy     molecular resonances     surface phonon polaritons     energy materials    

Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in

Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang

《环境科学与工程前沿(英文)》 2020年 第14卷 第2期 doi: 10.1007/s11783-019-1210-8

摘要: • Principles and methods for fluorescence EEM are systematically outlined. • Fluorophore peak/region/component and energy information can be extracted from EEM. • EEM can fingerprint the physical/chemical/biological properties of DOM in MBRs. • EEM is useful for tracking pollutant transformation and membrane retention/fouling. • Improvements are still needed to overcome limitations for further studies. The membrane bioreactor (MBR) technology is a rising star for wastewater treatment. The pollutant elimination and membrane fouling performances of MBRs are essentially related to the dissolved organic matter (DOM) in the system. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy, a powerful tool for the rapid and sensitive characterization of DOM, has been extensively applied in MBR studies; however, only a limited portion of the EEM fingerprinting information was utilized. This paper revisits the principles and methods of fluorescence EEM, and reviews the recent progress in applying EEM to characterize DOM in MBR studies. We systematically introduced the information extracted from EEM by considering the fluorescence peak location/intensity, wavelength regional distribution, and spectral deconvolution (giving fluorescent component loadings/scores), and discussed how to use the information to interpret the chemical compositions, physiochemical properties, biological activities, membrane retention/fouling behaviors, and migration/transformation fates of DOM in MBR systems. In addition to conventional EEM indicators, novel fluorescent parameters are summarized for potential use, including quantum yield, Stokes shift, excited energy state, and fluorescence lifetime. The current limitations of EEM-based DOM characterization are also discussed, with possible measures proposed to improve applications in MBR monitoring.

关键词: excitation-emission matrix (EEM)     dissolved organic matter (DOM)     membrane bioreactor (MBR)     fluorescence indicator     characterization method    

Real time monitoring of bioreactor mAb IgG3 cell culture process dynamics via Fourier transform infraredspectroscopy: Implications for enabling cell culture process analytical technology?

Huiquan Wu, Erik Read, Maury White, Brittany Chavez, Kurt Brorson, Cyrus Agarabi, Mansoor Khan

《化学科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 386-406 doi: 10.1007/s11705-015-1533-3

摘要: Compared to small molecule process analytical technology (PAT) applications, biotechnology product PAT applications have certain unique challenges and opportunities. Understanding process dynamics of bioreactor cell culture process is essential to establish an appropriate process control strategy for biotechnology product PAT applications. Inline spectroscopic techniques for real time monitoring of bioreactor cell culture process have the distinct potential to develop PAT approaches in manufacturing biotechnology drug products. However, the use of inline Fourier transform infrared (FTIR) spectroscopic techniques for bioreactor cell culture process monitoring has not been reported. In this work, real time inline FTIR Spectroscopy was applied to a lab scale bioreactor mAb IgG3 cell culture fluid biomolecular dynamic model. The technical feasibility of using FTIR Spectroscopy for real time tracking and monitoring four key cell culture metabolites (including glucose, glutamine, lactate, and ammonia) and protein yield at increasing levels of complexity (simple binary system, fully formulated media, actual bioreactor cell culture process) was evaluated via a stepwise approach. The FTIR fingerprints of the key metabolites were identified. The multivariate partial least squares (PLS) calibration models were established to correlate the process FTIR spectra with the concentrations of key metabolites and protein yield of in-process samples, either individually for each metabolite and protein or globally for all four metabolites simultaneously. Applying the 2 derivative pre-processing algorithm to the FTIR spectra helps to reduce the number of PLS latent variables needed significantly and thus simplify the interpretation of the PLS models. The validated PLS models show promise in predicting the concentration profiles of glucose, glutamine, lactate, and ammonia and protein yield over the course of the bioreactor cell culture process. Therefore, this work demonstrated the technical feasibility of real time monitoring of the bioreactor cell culture process via FTIR spectroscopy. Its implications for enabling cell culture PAT were discussed.

关键词: process analytical technology (PAT)     Fourier-transform infrared (FTIR) spectroscopy     partial least squares (PLS) regression     mouse IgG3     bioreactor cell culture process     real time process monitoring    

可移动光学晶格时钟让时间变得更精确

Dana Mackenzie

《工程(英文)》 2020年 第6卷 第11期   页码 1210-1211 doi: 10.1016/j.eng.2020.08.008

Digitalization optical open loop test system for fiber optic gyroscope

ZHANG Deng-wei, SHU Xiao-wu, MU Xu-dong, LIU Cheng

《机械工程前沿(英文)》 2006年 第1卷 第4期   页码 434-438 doi: 10.1007/s11465-006-0053-8

摘要: In order to receive and process the open loop signal from fiber optic gyroscopes speedily, stably and expediently, and to realize the amity interface between human and machine, a digital system that can convert GPIB (general purpose interface bus ) parallel bus into Universal Serial Bus is developed. All the interface functions of GPIB and the hardware system are realized through FPGA. With a digital sampling and processing system designed with VC++ in Windows platform, the real-time controlling procedure, high-speed receiving and sending data can be carried out, and the results can be displayed too. So the design of the system is flexible, the reliability and the stability are improved, error rate is no more than 10, the highest bit rate is 8 MB/s and the open loop detection system for optic fiber gyros achieves standardization and complete digitalization simultaneously.

关键词: stability     real-time controlling     standardization     controlling procedure     complete digitalization    

利用太赫兹时域光谱法和微腔器件检测样品:综述 Special Feature on Precision Measurement and Instr

Lin CHEN, Deng-gao LIAO, Xu-guang GUO, Jia-yu ZHAO, Yi-ming ZHU, Song-lin ZHUANG

《信息与电子工程前沿(英文)》 2019年 第20卷 第5期   页码 591-607 doi: 10.1631/FITEE.1800633

摘要: 简要回顾了上海理工大学在用于探测样品的太赫兹时域光谱系统和微腔器件领域的研究进展。首先,通过施加高电场研究了基于砷化镓m-i-n二极管的宽频太赫兹辐射源。然后,详细介绍了我们实验室产生的自由空间太赫兹时域光谱系统和光纤耦合太赫兹时域光谱系统及其在药物/癌症检测中的应用。为进一步提高信噪比和高灵敏度,我们引入3种通用微腔结构实现微量样品检测。本文总结了这些结构的特性、性能和潜在的传感应用。

关键词: 太赫兹时域光谱;微腔;金属孔阵列;波导腔;伪局域表面等离子体    

Space-time evolution rules study on acoustic emission location in rock under cyclic loading

Jiang XU, Shuchun LI, Yunqi TAO, Yongdong JIANG, Xiaojun TANG,

《结构与土木工程前沿(英文)》 2009年 第3卷 第4期   页码 422-427 doi: 10.1007/s11709-009-0056-8

摘要: An acoustic emission (AE) location experiment was performed on sandstone using an advanced AE test system. The space-time evolution rule regarding damage was analyzed under cyclic loading as well as AE. The results show that AE on static loading process is consistent with the damage evolution rule of compression and the elastic-plastic deformation phase; at the beginning of cyclic loading with low duration time and energy, AE events came from a small crack. The location result showed that most events occurred in the core zone forming at the static loading process, and the location points changed slowly. AE energy changed little during the metaphase of cyclic process. There was a modest increase of location points in every cycle. The tendency of steady development could be predicted from the AE location events. At the end of each cyclic loading, the quantity of AE events and energy increased quite rapidly, reaching a maximum at the last cycle. AE events had high energy and duration time. Location events changed quite rapidly and assembled and linked continuously in the core zone. At the same time, they expanded to the top of specimen. A macroscopic crack finally formed. In the postfailure process, some AE events still existed due to fracturing of gliding friction. Owing to the inner stress balance of rock even after loading stopped, minor AE events still occurred.

关键词: location result     AE location     consistent     friction     elastic-plastic deformation    

Factors influencing near infrared spectroscopy analysis of agro-products: a review

Xiao XU, Lijuan XIE, Yibin YING

《农业科学与工程前沿(英文)》 2019年 第6卷 第2期   页码 105-115 doi: 10.15302/J-FASE-2019255

摘要:

The near infrared (NIR) spectroscopy technique has wide applications in agriculture with the advantages of being nondestructive, sensitive, safe and rapid. However, there are still more than 40 error sources influencing the robustness and accuracy of its calibration and operation. Environmental, sample and instrument factors that influence the analysis are discussed in this review, including temperature, humidity and other factors that introduce uncertainty. Error sources from livestock products, fruit and vegetables, which are the most common objects in the field of NIR analysis, are also emphasized in the second part. In addition, studies utilizing different instruments, spectral pretreatments, variable selection methods, wavelength ranges, detection modes and calibration methods are tabulated to illustrate the complications they introduce and how they influence NIR analysis. It is suggested that large scale of data with abundant varieties can be used to build a more robust calibration model, in order to improve the robustness and accuracy of the NIR analytical model, and overcome problems caused by confining analysis to too many uniform samples.

关键词: agro-product     error source     influence factor     near infrared spectroscopy    

Genome-resolved metagenomic analysis reveals different functional potentials of multiple Brocadia species

《环境科学与工程前沿(英文)》 2023年 第17卷 第1期 doi: 10.1007/s11783-023-1602-7

摘要:

● Four Ca. Brocadia species were observed during the spontaneously enrichment.

关键词: Anammox     Candidatus Brocadia     Functional potential     Cooccurring mechanisms     Swine wastewater treatment facilities    

Development of surface reconstruction algorithms for optical interferometric measurement

Dongxu WU, Fengzhou FANG

《机械工程前沿(英文)》 2021年 第16卷 第1期   页码 1-31 doi: 10.1007/s11465-020-0602-6

摘要: Optical interferometry is a powerful tool for measuring and characterizing areal surface topography in precision manufacturing. A variety of instruments based on optical interferometry have been developed to meet the measurement needs in various applications, but the existing techniques are simply not enough to meet the ever-increasing requirements in terms of accuracy, speed, robustness, and dynamic range, especially in on-line or on-machine conditions. This paper provides an in-depth perspective of surface topography reconstruction for optical interferometric measurements. Principles, configurations, and applications of typical optical interferometers with different capabilities and limitations are presented. Theoretical background and recent advances of fringe analysis algorithms, including coherence peak sensing and phase-shifting algorithm, are summarized. The new developments in measurement accuracy and repeatability, noise resistance, self-calibration ability, and computational efficiency are discussed. This paper also presents the new challenges that optical interferometry techniques are facing in surface topography measurement. To address these challenges, advanced techniques in image stitching, on-machine measurement, intelligent sampling, parallel computing, and deep learning are explored to improve the functional performance of optical interferometry in future manufacturing metrology.

关键词: surface topography     measurement     optical interferometry     coherence envelope     phase-shifting algorithm    

标题 作者 时间 类型 操作

Synthesis of Ag and Cd nanoparticles by nanosecond pulsed discharge in liquid nitrogen

Mahmoud Trad, Alexandre Nominé, Natalie Tarasenka, Jaafar Ghanbaja, Cédric Noël, Malek Tabbal, Thierry Belmonte

期刊论文

Engineering

Raquel Portela, Susana Perez-Ferreras, Ana Serrano-Lotina, Miguel A. Bañares

期刊论文

Long-lasting photoluminescence quantum yield of cesium lead halide perovskite-type quantum dots

Yonghyun Kim, Huiwen Liu, Yi Liu, Boa Jin, Hao Zhang, Wenjing Tian, Chan Im

期刊论文

Terahertz time-domain spectroscopy of high-pressure flames

Jason BASSI, Mark STRINGER, Bob MILES, Yang ZHANG

期刊论文

Time of flight improved thermally grown oxide thickness measurement with terahertz spectroscopy

期刊论文

Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials

Amun JARZEMBSKI, Cedric SHASKEY, Keunhan PARK

期刊论文

Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in

Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang

期刊论文

Real time monitoring of bioreactor mAb IgG3 cell culture process dynamics via Fourier transform infraredspectroscopy: Implications for enabling cell culture process analytical technology?

Huiquan Wu, Erik Read, Maury White, Brittany Chavez, Kurt Brorson, Cyrus Agarabi, Mansoor Khan

期刊论文

可移动光学晶格时钟让时间变得更精确

Dana Mackenzie

期刊论文

Digitalization optical open loop test system for fiber optic gyroscope

ZHANG Deng-wei, SHU Xiao-wu, MU Xu-dong, LIU Cheng

期刊论文

利用太赫兹时域光谱法和微腔器件检测样品:综述

Lin CHEN, Deng-gao LIAO, Xu-guang GUO, Jia-yu ZHAO, Yi-ming ZHU, Song-lin ZHUANG

期刊论文

Space-time evolution rules study on acoustic emission location in rock under cyclic loading

Jiang XU, Shuchun LI, Yunqi TAO, Yongdong JIANG, Xiaojun TANG,

期刊论文

Factors influencing near infrared spectroscopy analysis of agro-products: a review

Xiao XU, Lijuan XIE, Yibin YING

期刊论文

Genome-resolved metagenomic analysis reveals different functional potentials of multiple Brocadia species

期刊论文

Development of surface reconstruction algorithms for optical interferometric measurement

Dongxu WU, Fengzhou FANG

期刊论文